


## Slide 2

# Historical Significance of the Industrial Revolution

- An ancient Greek or Roman would have been just as comfortable in Europe in 1700 because daily life was not much different – agriculture and technology were not much changed in 2000+ years
- The Industrial Revolution changed human life drastically
- More was created in the last 250+ years than in the previous 2500+ years of known human history

## Slide 3

## What was the Industrial Revolution?

- The Industrial Revolution was a fundamental change in the way goods were produced, from human labor to machines
- The more efficient means of production and subsequent higher levels of production triggered far-reaching changes to industrialized societies

## The Industrial Revolution

Machines were invented which replaced human labor

 New energy sources were developed to power the new machinery – water, steam, electricity, oil (gas, kerosene) Some historians place advances in atomic, solar, and wind energy at the later stages of the Industrial Revolution

 Increased use of metals and minerals • Aluminum, coal, copper, iron, etc.

## Slide 5

#### The Industrial Revolution

Transportation improved

- Ships Wooden ships → Iron ships → Steel ships
   Wind-powered sails → Steam-powered boilers
- Trains
- Automobiles
- Communication improved
  - TelegraphTelephoneRadio

## Slide 6

## Developments

- Mass production of goods
  Increased numbers of goods
  Increased diversity of goods produced
  Development of factory system of production
  Rural-to-urban migration
  People the farms to work in cities
  Development and growth of new socio-economic classes
  Working class, bourgeoise, and wealthy industrial class
  Commitment to research and development
  Investments in new technologies
  Investmentai and governmental interest in promoting invention, the sciences, and overall industrial growth

#### Slide 7 Background of the Industrial Revolution

- Commercial Revolution
- $\bullet\,$  15  $^{th}$  , 16  $^{th}$  , and 17  $^{th}$  centuries
- · Europeans expanded their power worldwide
- Increased geographic knowledge
- Colonies in the Americas and Asia
- Increased trade and commerce Guild system could not meet the demands of increasing numbers goods

## Slide 8

## Background of the Industrial Revolution

- Scientific Revolution
- 17<sup>th</sup> and 18<sup>th</sup> centuries
   Discoveries of Boyle, Lavoisier, Newton, etc.
   Intellectual Revolution

  - 17<sup>th</sup> and 18<sup>th</sup> centuries
    Writings of Locke, Voltaire, etc.
- Atmosphere of discovery and free intellectual inquiry
- Greater knowledge of the world
  Weakened superstition and tradition
  Encouraged learning and the search for better and newer ways of doing things

## Slide 9

#### Development of the Domestic System of Production

- Domestic system developed in England
- Late 1600s-late 1800s
- Domestic system of production "putting out" system
- Businesspeople delivered raw materials to workers' homes
- Workers manufactured goods from these raw materials in their homes (typically articles of clothing) Businesspeople picked up finished goods and paid workers wages based on number of items
- Domestic system could not keep up with demand

## Factory System

- Developed to replace the domestic system of production
- Faster method of production
- Workers concentrated in a set locationProduction anticipated demand
- Production anticipated demand software in the domestic system, a woman might select fabric and have a businessperson give it to a home-based worker to make into a dress. Under the factory system, the factory owner bought large lots of popular fabrics and had workers create multiple dresses in common sizes, anticipating that women would buy them.

## Slide 11

|                                  | Domestic System                                                                                                             | Factory System                                                                                                                                                            |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods                          | Hand to ols                                                                                                                 | •Machines                                                                                                                                                                 |
| Location                         | •Home                                                                                                                       | •Factory                                                                                                                                                                  |
| Ownership and<br>Kinds of Tools  | <ul> <li>Small hand lools owned by worker</li> </ul>                                                                        | +Large power-driven machines owned by the<br>capitalist                                                                                                                   |
| Production Output                | <ul> <li>Small level of production</li> <li>Sold only to local market</li> <li>Manufactured on a per-order basis</li> </ul> | *Large level of production<br>*Sold to a worldwide market<br>*Manufactured in anticipation of demand                                                                      |
| Nature of Work Done<br>by Worker | •Worker manufactured entire item                                                                                            | <ul> <li>Worker typically made one part of the large<br/>whole</li> <li>Henry Ford's assembly line (early 20<sup>th</sup><br/>century) kept workers stationary</li> </ul> |
| Hours ofWork                     | •Worker worked as much as he/she would<br>and could, according to demand                                                    | ·Worker worked set daily hours                                                                                                                                            |
| Worker Dependence<br>on Employer | •Worker had multiple sources of<br>sustenance-other employers, own garden or<br>farm, and outside farm labor                | <ul> <li>Worker relied entirely on capitalist for his/he<br/>income-urban living made personal farming<br/>and gardening impractical</li> </ul>                           |

## Slide 12

## England: Birthplace of the Industrial Revolution

- No concrete start date for the Industrial Revolution
- Marked by gradual, slow changes
- After 1750 these changes were noticeable first in England

|     | •                                                      | ndustrial Re<br>England                              | evolution                       |
|-----|--------------------------------------------------------|------------------------------------------------------|---------------------------------|
| inv | Capital for<br>esting in the<br>means of<br>production | Colonies and<br>Markets for<br>manufactured<br>goods | Raw materials<br>for production |
|     | Workers                                                | Merchant<br>marine                                   | Geography                       |
|     |                                                        |                                                      |                                 |

#### Slide 14

## England's Resources: Capital

- The Commercial Revolution made many English merchants very wealthy
- These merchants had the capital to invest in the factory system – money to buy buildings, machinery, and raw materials

## Slide 15

#### England's Resources: Colonies and Markets

- Wealth from the Commercial Revolution spread beyond the merchant class
- England had more colonies than any other nation
- Its colonies gave England access to enormous markets and vast amounts of raw materials
- Colonies had rich textile industries for centuries
   Many of the natural doths popular today, such as calico and gingham, were originally created in India
   China had a silk industry

# England's Resources: Raw Materials

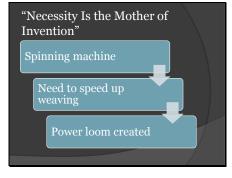
- England itself possessed the necessary raw materials to create the means of production
- Coal vast coal reserves powered steam engines
- Iron basic building block of large machines, railroad tracks, trains, and ships

## Slide 17

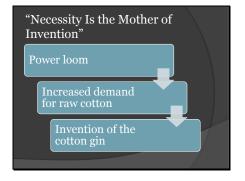
## England's Resources: Workers

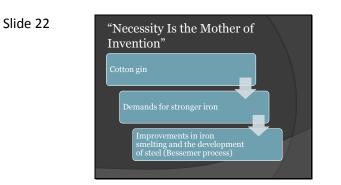
- Serfdom and guilds ended earlier in England than other countries
- English people could freely travel from the countryside to the cities
- Enclosure Acts caused many small farmers to lose their lands, and these former farmers increased the labor supply

## Slide 18


#### England's Resources: Merchant Marine

- World's largest merchant fleet
- Merchant marine built up from the Commercial Revolution
- Vast numbers of ships could bring raw materials and finished goods to and from England's colonies and possessions, as well as to and from other countries


## England's Resources: Geography


- England is the political center of Great Britain, an island
- Great Britain (as the entire island was called beginning in 1707) did not suffer fighting on its land during the wars of the 18<sup>th</sup> century
- Island has excellent harbors and ports
   Damp climate benefited the textile industry (thread did not dry out)
- Government stable
- No internal trade barriers

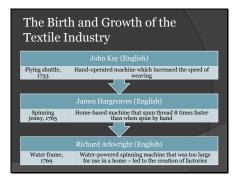
## Slide 20

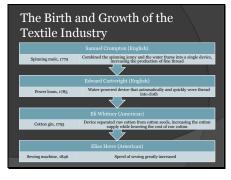












## Slide 24

## The Textile Industry

- Textiles cloths or fabrics
- First industry to be industrialized
- Great Britain learned a lot about textiles from India and China







## Slide 27

## Development of Steam Engines

- Early water power involved mills built over fast-moving streams and rivers
- Early water power had problems
  - Not enough rivers to provide the power needed to meet growing demand
  - Rivers and streams might be far removed from raw materials, workers, and markets

  - Rivers are prone to flooding and drying

## Steam Power

- Humans tried harnessing steam power for millennia
  - Hero of Alexandria, Egypt created a steam-driven device in the 1<sup>st</sup> century B.C.E.
- Thomas Newcomen, England (1704)
   Created a steam engine to pump water from mines
- James Watt, Scotland (1769)
   Improved Newcomen's engine to power machinery

## Slide 29

## Steam Engines

- By 1800, steam engines were replacing water wheels as sources of power for factories
- Factories relocated near raw materials, workers, and ports
- Ocities grew around the factories built near central England's coal and iron mines
   Manchester, Liverpool

## Slide 30

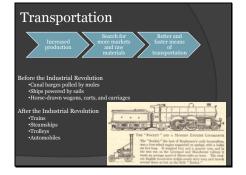
## Coal and Iron

- Vast amounts of fuel were required to smelt iron ore to burn out impurities
- Abraham Darby (1709)
  Discovered that heating coal turned it into more efficient coke
- John Smeaton (1760)
- Smelted iron by using water-powered air pumps to create steam blasts
- Henry Cort (1783)
   Developed the puddling process which purified and strengthened molten iron



## Increases in Coal and Iron Production, 1770-1800

- Coal production doubled • 6 million to 12 million tons
- Pig iron production increased 250%
- o Great Britain produced as much coal and iron as every other country combined


## Slide 32

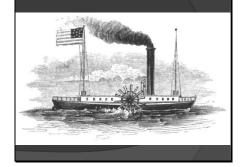
## Bessemer Process and Steel

- Prior to the Industrial Revolution, steel was difficult to produce and expensive

- difficult to produce and expensive 9 Henry Bessemer, 1856 Developed the Bessemer process Brought on the "Age of Steel" Steel is the most important metal used over the past 150+ years Other improvements in steel production Open-hearth furnace Electric furnace Use of other metals to produce various types of steel

## Slide 33

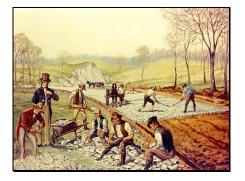



| Transpo                                                                                                | rtati                        | on Re                                                                              | volu        | ition                                                                                              |  |
|--------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------|--|
| Robert Fulton<br>(American)                                                                            | aı                           | nas Telford<br>nd John<br>am (British)                                             |             | George<br>tephenson<br>(English)                                                                   |  |
| Steamboat<br>(1807)     Sped water<br>transportation                                                   | roads<br>1830                | <ul> <li>Macadamized<br/>roads (1810-<br/>1830)</li> <li>Improved roads</li> </ul> |             | <ul> <li>Locomotive<br/>(1825)</li> <li>Fast land<br/>transport of<br/>people and goods</li> </ul> |  |
|                                                                                                        | Gottlieb Daimler<br>(German) |                                                                                    | iesel<br>m) | Orville and Wilbur<br>Wright<br>(American)                                                         |  |
| <ul> <li>Gasoline engine<br/>(1885)</li> <li>Led to the<br/>invention of the<br/>automobile</li> </ul> |                              | <ul> <li>Diesel engine<br/>(1892)</li> <li>Cheaper fuel</li> </ul>                 |             | • Airplane (1903)<br>• Air transport                                                               |  |

## Slide 35

## Steamboats

- Robert Fulton invented the steamboat in 1807
  The *Clermont* operated the first regular steamboat route, running between Albany and New York City
  1819 the *Savannah* used a steam engine as auxiliary power for the first time when it sailed across the Atlantic Ocean
  1836 John Ericsson invented a screw propeller to replace paddle wheels
  1838 the *Great* Western first ship to sail across the Atlantic on steam power alone, completing the trip in 15 days

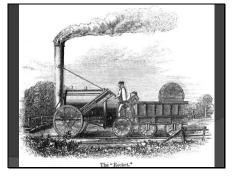

## Slide 36



## Macadamized Roads

- Strong, hard roads invented by Thomas Telford and John McAdam
- Improvement over dirt and gravel roads
- Macadamized roads have a smooth, hard surface that supports heavy loads without requiring a thick roadbed
- Modern roads are macadamized roads, with tar added to limit the creation of dust

## Slide 38




## Slide 39

## Railroads

- I830 Stephenson's "Rocket" train traveled the 40 miles between Liverpool and Manchester in 1 <sup>1</sup>/<sub>2</sub> hours
- 1830-1870 railroad tracks went from 49 miles to over 15,000 miles
- Steel rails replaced iron rails
  1869 Westinghouse's air brake made train travel safer
- Greater train traveling comfort heavier train cars, improved road beds, and sleeping cars

Slide 40



| Communications Revolution |                                                                                                                                                    |  |                                                                                                            |  |                                                                                                                |                                                                     |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
|                           | Samuel F.B.<br>Morse (American)                                                                                                                    |  | Alexander<br>Graham Bell<br>(American)                                                                     |  |                                                                                                                | 18 W. Field<br>merican)                                             |  |  |
| Rapid<br>comm             | Telegraph (1844)     Rapid     communication     across continents                                                                                 |  | Telephone (1876)     Human speech<br>heard across<br>continents                                            |  | <ul> <li>Atlantic cable<br/>(1866)</li> <li>United States<br/>and Europe<br/>connected by<br/>cable</li> </ul> |                                                                     |  |  |
|                           | Guglielmo<br>Marconi (Italian)<br>• Wireless<br>telegraph, an<br>early form of the<br>radio (1895)<br>• No wires needed<br>for sending<br>messages |  |                                                                                                            |  |                                                                                                                | Vladin<br>Zwory<br>(Americ                                          |  |  |
|                           |                                                                                                                                                    |  | <ul> <li>Radio tube<br/>(1907)</li> <li>Radio broadcasts<br/>could be sent<br/>around the world</li> </ul> |  |                                                                                                                | Television (1925)     Simultaneous<br>audio and visual<br>broadcast |  |  |

## Slide 42

## **Printing Revolution**

- Printing 1800-1830

  Iron printing press
  Steam-driven press
  Steam-driven press
  Rotary press 1870
  Invented by Richard Hoe
  Printed both sides of a page at once
  Linotype machine 1884
  Invented by Ottmar Mergenthaler
  A machine operator could create a "line of type" all at one go, rather than having to individually set each tetter
  Newspapers became much of
- Newspapers became much cheaper to produce
  Cost of a newspaper plummeted
  Number of newspapers increased



## **Review Questions**

- 1. What was the Industrial Revolution?
- 2. Describe at least three developments of the Industrial Revolution.
- 3. Compare and contrast the domestic and factory methods of production.
- 4. Why did the Industrial Revolution begin in England?
- 5. Explain why one invention or development leads to another.

## Slide 44

## Review Questions

- 6. Explain how developments in the textile industry sparked the Industrial Revolution.
- 7. Describe at least three developments in the area of transportation.
- Describe at least three developments in the field of communications.
- 9. Considering the conditions necessary for industrialization to occur, how well equipped is the undeveloped world for becoming industrialized? Are modern undeveloped nations in a better or worse position than 18<sup>th</sup>- and 19<sup>th</sup>-century England?